Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life.

نویسندگان

  • Jonathan Lombard
  • David Moreira
چکیده

Isoprenoids are a very diverse family of organic compounds widespread in the three domains of life. Although they are produced from the condensation of the same precursors in all organisms (isopentenyl pyrophosphate and dimethylallyl diphosphate), the evolutionary origin of their biosynthesis remains controversial. Two independent nonhomologous metabolic pathways are known: the mevalonate (MVA) pathway in eukaryotes and archaea and the methylerythritol phosphate (MEP) pathway in bacteria and several photosynthetic eukaryotes. The MVA pathway is also found in a few bacteria, what has been explained in previous works by recent acquisition by horizontal gene transfer (HGT) from eukaryotic or archaeal donors. To reconsider the question of the evolutionary origin of the MVA pathway, we have studied the origin and the evolution of the enzymes of this pathway using phylogenomic analyses upon a taxon-rich sequence database. On the one hand, our results confirm the conservation in archaea of an MVA pathway partially different from eukaryotes. This implies that each domain of life possesses a characteristic major isoprenoid biosynthesis pathway: the classical MVA pathway in eukaryotes, a modified MVA pathway in archaea, and the MEP pathway in bacteria. On the other hand, despite the identification of several HGT events, our analyses support that the MVA pathway was ancestral not only in archaea and eukaryotes but also in bacteria, in contradiction with previous claims that the presence of this pathway in bacteria was due to HGT from other domains. Therefore, the MVA pathway is likely an ancestral metabolic route in all the three domains of life, and hence, it was probably present in the last common ancestor of all organisms (the cenancestor). These findings open the possibility that the cenancestor had membranes containing isoprenoids.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants.

1 Isoprenoid biosynthesis 1.1 The mevalonate route to isopentenyl diphosphate 1.2 Isoprenoid biosynthesis in higher plants: some contradictions with the mevalonate pathway 2 The discovery of the mevalonate-independent pathway 2.1 The origin of the discovery: the biosynthesis of bacterial hopanoids 2.2 The origin of the carbon atoms of isoprenic units in the mevalonate-independent pathway 2.3 d-...

متن کامل

Effect of Concomitant Lycopene Biosynthesis on CoQ10 Accumulation in Transformed Escherichia coli Strains

CoQ10 and lycopene are isoprenoid compounds with nutraceutical and pharmaceutical benefits. In this study, the effect of concomitant lycopene biosynthesis on CoQ10 accumulation in transformed Escherichia coli DH5α was studied. A lycopene production pathway including geranylgeranyl diphosphate synthase (crtE), phytoene synthase (crtB), and phytoene desaturase (crtI) from Erwinia herbicola was co...

متن کامل

The non-mevalonate isoprenoid biosynthesis of plants as a test system for drugs against malaria and pathogenic bacteria.

Two plant test systems are presented in the search for new inhibitors of the non-mevalonate isoprenoid pathway. A derivative of clomazone appears to be an inhibitor of the deoxyxylulose 5-phosphate/methylerythritol 4-phosphate (DOXP/MEP) pathway of isoprenoid formation.

متن کامل

Development of a multi-gene expression system in Xanthophyllomyces dendrorhous

BACKGROUND Red yeast, Xanthophyllomyces dendrorhous (Phaffia rhodozyma) is the only yeast known to produce astaxanthin, an anti-oxidant isoprenoid (carotenoid) that is widely used in the aquaculture, food, pharmaceutical and cosmetic industries. Recently, the potential of this microorganism as a platform cell factory for isoprenoid production has been recognized because of high flux through its...

متن کامل

Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors.

The essential steps of the novel non-mevalonate pathway of isopentenyl diphosphate and isoprenoid biosynthesis in plants are described. The first five enzymes and genes of this 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway are known. The herbicide fosmidomycin specifically blocks the second enzyme, the DOXP reductoisomerase. The DOXP/MEP pathway is also p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 28 1  شماره 

صفحات  -

تاریخ انتشار 2011